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Abstract

A previously published analytical formulation aimed at predicting broadband trailing-edge noise of
subsonic airfoils is extended here to account for all the effects due to a limited chord length, and to infer the
far-field radiation off the mid-span plane. Three-dimensional gusts are used to simulate the incident
aerodynamic wall pressure that is scattered as acoustic waves. A leading-edge back-scattering correction is
derived, based on the solution of an equivalent Schwarzschild problem, and added to the original formula.
The full solution is found to agree very well with other analytical results based on a vanishing Mach
number Green’s function tailored to a finite-chord flat plate and sources close to the trailing edge.
Furthermore, it is valid for any subsonic ambient mean flow velocity. The back-scattering correction is
shown to have a significant effect at lower reduced frequencies, for which the airfoil chord is acoustically
compact, and at the transition between supercritical and subcritical gusts. It may be important for small-
size airfoils, such as automotive fan blades and similar technologies. The final far-field noise formula can be
used to predict trailing-edge noise in an arbitrary configuration, provided that a minimum statistical
description of the aerodynamic pressure fluctuations on the airfoil surface close to the trailing edge is
available.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

c ¼ 2b airfoil chord length

c0 sound speed in quiescent medium

I radiation integral

k acoustic wavenumber

K convective wavenumber

K1; K2 streamwise and spanwise aerodynamic
wavenumbers

ly spanwise correlation length

L airfoil span length

M free-stream Mach number

p; p0; P fluctuating pressure variables

pK acoustic far-field pressure per wave-
number

Rs; Rt; S0 corrected distances for convection
effects

Spp far-field acoustic PSD

t time

U free-stream velocity

Uc convection velocity

x1; x2; x3 observer coordinate system

x; y; z source coordinate system

X ; Y ; Z source non-dimensional coordinate
system

a free-stream to convection speed ratio

b compressibility parameter

g2 coherence function

� correction factor

k; k0; m frequency parameters

P0 streamwise-integrated wavenumber
spectral density of wall–pressure fluc-
tuations

P wavenumber cross-spectral density of
wall–pressure fluctuations

f; F disturbance potential

Fpp wall pressure PSD

c; C modified acoustic potential

r0 flow density in quiescent medium

o angular frequency

Superscripts

¯ð�Þ made non-dimensional by b

Subscripts

1 first-order scattering (trailing edge solu-
tion)

2 second-order back-scattering (leading
edge solution)
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1. Introduction

Broadband self-noise or trailing-edge noise, due to the scattering of blade boundary layer
vortical disturbances into acoustic waves at the trailing edge, is a matter of primary interest, being
the only remaining broadband noise contribution when a subsonic fan operates in a homogeneous
stationary flow. It then defines the minimum achievable noise of a fan [1]. The concern for fan
manufacturers is two-fold. Firstly, any installation effect generates more noise, making pure self-
noise the lower limit to aim for when assessing low-noise designs. Secondly, self-noise can also be
reduced if its origin and leading parameters are clearly identified, in terms of flow variables that
can be varied through appropriate blade design. This latter point is especially crucial in wind
turbine blade design for instance, since trailing-edge noise can be the major acoustic nuisance in
that case [2–4].
Simple and easy-to-run prediction tools, that can be integrated in a fan design cycle, are

currently needed. A minimum degree of physical realism is required but the details of the
scattering process need not be reproduced exactly. Within the context of industrial applications, a
physically consistent model has only to provide reliable A weighted levels or 1

3
octave spectra at
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any observer location. This means a realistic distribution of the radiated noise power with both
frequency and angle of radiation, accurate enough for a definition in terms of decibels. Such tools
can be provided using closed-form expressions deduced from analytical models. Semi-empirical
methods have also been proposed [5–7]. Their limitation is that they can neither be extended to
airfoil sections nor to radiation angles that are not in the database used to produce the method.
The first analytical models were developed in the 1970s, with the initial work of Ffowcs Williams
and Hall [8] being followed by Amiet’s [9] and Howe’s [10] theories, amongst others. All these
formulations are based on the assumption of a semi-infinite airfoil, ignoring the leading edge. The
argument is that the scattering process involves characteristic scales of the order of magnitude of
the convected vortical eddies, much smaller than the chord length. More precisely, a half-plane
Green’s function is used in both [8,10]. In Amiet’s work [9], the scattering equivalent sources are
defined as if the airfoil were infinite in the upstream direction, but the radiation integral is
calculated over the effective finite chord length. More recently, trailing-edge noise has received
further attention [11]. It is recognized as a test case for numerical methods in Computational
Aero-Acoustics (CAA) [12,13]. A time-domain formulation has also been proposed by Casper and
Farassat [14]. A 2D computation of the Green’s function tailored to a slightly cambered airfoil
has also been performed by Oberai et al. [15].
Physically, blade self-noise results from the scattering of a boundary layer turbulent flow at the

trailing edge. It can then be related either to the vortical, aerodynamic velocity field around the
trailing edge or to the induced aerodynamic pressure field on the airfoil surface. The first
approach, based on the velocity field, is outlined in Ref. [8] and was applied by Wang et al. [16]
using Large Eddy Simulation (LES) results as input. Despite its great interest, it does not appear
to be viable for industrial, fast turn-around applications. The same approach with a statistical
description, thought as a post-processing of steady Reynolds–Averaged Navier Stokes (RANS)
calculations, would be a less sophisticated way of addressing the question.
The second approach, based on the induced wall pressure, has been more thoroughly developed

and applied, for instance by Brooks and Hodgson [17] and by Amiet [9,18]. However, it rarely
addresses the connection with computational results. It is worth noting that now the vortical field
is accounted for by means of its trace on the wall. This incident pressure is the equivalent acoustic
source and is not to be confused with the full pressure, including the acoustic scattering. The
question of whether or not the aerodynamic wall pressure can be used properly to determine the
acoustic far-field pressure from experimental results may be still controversial. The point is taken
for granted in this work, in view of the experimental evidence reported in the past in the case of a
NACA-0012 symmetric airfoil [17]. It has been confirmed recently by Roger and Moreau [19], re-
addressing the question of trailing-edge noise in the case of a thin cambered airfoil with rounded
leading and trailing edges, by means of measurements made a couple of millimeters upstream of
the trailing edge with flush-mounted pressure probes. At this location, the measured fluctuating
level and convection speed showed that the wall pressure was essentially of aerodynamic nature.
Indeed any aerodynamic pressure associated with a fully developed unsteady flow has a much
higher level than the corresponding acoustic pressure, typically between 20 and 30 dB below.
The present work deals with an extension of Amiet’s formulation and does consider the incident

aerodynamic pressure as the origin of the sound. It is mainly concerned with analytical
developments, aimed at predicting broadband self-noise from LES input data [20]. A back-
scattering, leading-edge correction is first developed in Section 2 for incident 2D pressure gusts
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using a two-step Schwarzschild’s procedure [9,21]. This yields a modified chordwise distribution
of the acoustic sources induced by the scattering mechanism. On the one hand, the full solution
has the advantage of accounting for all the effects of a finite chord length. On the other hand, it
has the same precision as the similar two-step solution also derived by Amiet to solve the
complementary problem of the noise generated when upstream turbulence interacts with the
leading edge of an airfoil [21]. The formulation is equivalent to the one derived by Howe [11] in
the case of a vanishing Mach number. A 3D generalization is proposed in Section 3, with
emphasis on oblique gusts and the subcritical regime, that appears not to have been investigated
before. The far-field sound is addressed in Section 4, where the basic radiation integral is first
derived for a single Fourier component of the incident pressure field. Then the power spectral
density (PSD) of the acoustic pressure is related to the statistics of the aerodynamic wall pressure,
including the radiation off the mid-span plane.
2. Generalized gust scattering formulae

2.1. Schwarzschild’s solution

The following result, referred to as Schwarzschild’s solution [22], is not demonstrated here. Let
F be a 2D scalar field solution of the following wave problem:

q2F
qx2

þ
q2F
qz2

þ m2F ¼ 0,

Fðx; 0Þ ¼ f ðxÞ; xX0,

qF
qz

ðx; 0Þ ¼ 0; xo0.

Then for any xo0

Fðx; 0Þ ¼
1

p

Z 1

0

Gðx; x; 0Þf ðxÞdx

with

Gðx; x; 0Þ ¼
ffiffiffiffiffiffiffi
�x

x

r
e�imðx�xÞ

x� x
.

When addressing scattering problems in aeroacoustics, Amiet applies this result to determine
the disturbance wall pressure generated when an incident vortical velocity field impinges on the
leading edge of an airfoil [21] or when an incident (aerodynamic) wall pressure field is convected
past the trailing edge [9]. The disturbance pressure then acts as equivalent acoustic sources and the
far-field pressure is calculated by means of a radiation integral. In the second case, re-addressed
here, the mathematical problem means that a full Kutta condition is assumed at the trailing edge.
Note that this is again an unsolved question. Howe [10] pointed out that the unsteady Kutta
condition might be only partially fulfilled, especially at higher frequencies. The application of
Schwarzschild’s procedure leads to mathematical solutions that are equivalent to the ones
obtained by applying the Wiener–Hopf technique (see Ref. [23]).
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2.2. Scattering of 2D pressure gusts

As a starting point for further developments, Amiet’s original derivations are reproduced here
for completeness. The airfoil is reduced to a flat plate with zero thickness and angle of attack, and
with chord length c ¼ 2b: The space is described by the streamwise coordinate x and the normal z

coordinate, the fluid moving uniformly with velocity U : The trailing edge is at x ¼ 0 (Fig. 1). Let
us first consider that the incident aerodynamic wall pressure can be split into 2D Fourier
components, defining pressure gusts with wave fronts parallel to the trailing edge. The convected
wave equation in the plane normal to the airfoil is written as

q2p0

qx2
þ

q2p0

qz2
�

1

c20

q
qt

þ U
q
qx

� �2

p0 ¼ 0

with p0ðx; z; tÞ ¼ Pðx; zÞeiot the disturbance pressure at reduced frequency o: Thus, we obtain the
complex equation

b2
q2P
qx2

þ
q2P
qz2

� 2ikM
qP

qx
þ k2P ¼ 0

with k ¼ o=c0 and b2 ¼ 1� M2; M ¼ U=c0 being the free stream Mach number, assumed lower
than unity.
Performing the change of variable

Pðx; zÞ ¼ pðx; zÞeiðkM=b2Þx

yields

b2
q2p
qx2

þ
q2p
qz2

þ
KM

b

� �2

p ¼ 0

with k ¼ KM and K ¼ o=U : By further transforming the problem with

X ¼
x

b
; Z ¼

bz

b
; K̄ ¼ Kb; m̄ ¼

K̄M

b2

a canonical wave equation is obtained:

q2p

qX 2
þ

q2p

qZ2
þ m̄2p ¼ 0. (1)
→
U

→−2b 0

x

z

Fig. 1. Basic 2D problem with trailing-edge coordinates.
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The airfoil extends over �2pXp0 in non-dimensional variables. Just upstream of the trailing
edge, the incident gust is written as p0ðx; 0; tÞ ¼ eiote�iaKx ¼ eiote�iK1x ¼ P0e

iot; with a ¼ U=Uc; Uc

being the convection speed, lower than U :
In order to derive the main scattering term from Schwarzschild’s solution, the airfoil is

artificially extended to infinity upstream, covering Xo0 [9]. P0 must be cancelled in the wake
according to the Kutta condition. This is done by adding a disturbance pressure P1 such that
P ¼ P0 þ P1 is zero for XX0: Since the airfoil surface is assumed perfectly rigid, the normal
derivative of P1 must be zero for Xo0: Finally, the following system of equations is obtained:

q2p1
qX 2

þ
q2p1
qZ2

þ m̄2p1 ¼ 0,

qp1
qZ

ðX ; 0Þ ¼ 0; Xo0,

p1 ¼ �e�iK̄X ½aþðM2=b2Þ
; XX0. ð2Þ

Schwarzschild’s solution then yields p1 and thus P1; for Xo0 and Z ¼ 0

p1ðX ; 0Þ ¼ �
1

p

Z 1

0

ffiffiffiffiffiffiffiffi
�X

x

r
e�im̄ðx�X Þ

x� X
e�iK̄x½aþðM2=b2Þ
 dx

¼ �
eim̄X

p

Z 1

0

ffiffiffiffiffiffiffiffi
�X

x

r
e�i½aK̄þð1þMÞm̄
x

x� X
dx.

The preceding integral is calculated after straightforward manipulations (Ref. [24, p. 319])Z 1

0

ffiffiffiffiffiffiffiffi
�X

x

r
e�iAx

x� X
dx ¼ pe�iAX 1�

eip=4ffiffiffi
p

p

Z �AX

0

e�itffiffi
t

p dt

� �
. (3)

Let us introduce the complex function

E�ðxÞ ¼

Z x

0

e�itffiffiffiffiffiffiffi
2pt

p dt ¼ C2ðxÞ � iS2ðxÞ,

where C2 and S2 are Fresnel integrals (Ref. [26]). Then, since
ffiffiffi
2

p
eip=4 ¼ 1þ i; we get, for Xo0

P1ðX ; 0Þ ¼ e�iaK̄X ½ð1þ iÞE�ð�½aK̄ þ ð1þ MÞm̄
X Þ � 1
. (4)

This is the result derived by Amiet [9].

2.3. Leading edge back-scattering

Eq. (4) does not provide an exact solution, except for an infinite chord. It is only the main term,
to be completed by a leading-edge correction. Indeed P1 does not satisfy any specified condition
on the potential in front of the airfoil leading edge, for Xo� 2: The needed correction is derived
here, again using Schwarzschild’s solution. First note that the disturbance pressure and potential
are related by

Peiot ¼ �r0
DF
Dt
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with F ¼ feiot; r0 being the undisturbed fluid density and D=Dt the substantial derivative.
Equivalently, in reduced variables

�
b

r0U
P ¼

qf
qX

þ iK̄f (5)

which leads to

fðX ; 0Þ ¼ �
b

r0U

Z x

�1

Pðx; 0Þ e�iK̄ðX�xÞ dx.

Thus the value of P1ðX ; 0Þ provides that for the potential for Xo0; as

f1ðX ; 0Þ ¼ �
b

r0U

Z X

�1

e�iaK̄x½ð1þ iÞE�ð�x½aK̄ þ ð1þ MÞm̄
Þ � 1
 e�iK̄ðX�xÞ dx.

Integrating by parts and accounting for the property E�ð1Þ ¼ ð1� iÞ=2 ¼ 1=ð1þ iÞ yields

f1ðX ; 0Þ ¼
be�iK̄X

ir0Uða� 1ÞK̄
fe�iða�1ÞK̄X ½ð1þ iÞE�ð�A1X Þ � 1


�Y½ð1þ iÞE�ð�AX Þ � 1
g ð6Þ

with

Y ¼

ffiffiffiffiffiffi
A1

A

r
; A1 ¼ K̄1 þ ð1þ MÞm̄; A ¼ K̄ þ ð1þ MÞm̄.

This potential must be now cancelled for Xo� 2 by adding a secondary potential correction,
corresponding to the back-scattering. Strictly speaking, the condition to be applied is a zero
potential at infinity [25]. Amiet’s solution based on the Schwarzschild’s technique imposes a zero
potential for Xo� 2 instead. This is compatible with dipoles distributed normal to the flow. The
same assumption is made here. A preliminary change of variable is needed in order to get another
canonical Schwarzschild problem

f1 ¼ c1 e
im̄MX ; n ¼ �ðX þ 2Þ

through which we introduce the c2 potential such that c2ðn; 0Þ ¼ �c1ðn; 0Þ for n40; i.e. Xo� 2;
and

qc2

qZ
ðn; 0Þ ¼ 0

for no0; i.e. the surface of the airfoil plus an infinite extension downstream.
Now c2 is a solution of the wave equation with parameter m̄: Consequently, for no0

c2ðn; 0Þ ¼
�1

p

Z 1

0

ffiffiffiffiffiffi
�n
x

r
e�im̄ðx�nÞ

x� n
c1ðx; 0Þdx.
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For convenience, the E� function above can be related to the complementary complex error
function [26]

ð1þ iÞE�ðxÞ � 1 ¼ �erfc� ð1� iÞ

ffiffiffi
x

2

r� �
¼ �erfc ð1þ iÞ

ffiffiffi
x

2

r� �
¼ �½1� F�ð

ffiffiffiffi
ix

p
Þ


with the equivalent definitions

F�ðZÞ ¼
1ffiffiffi
p

p

Z Z2

0

e�zffiffiffi
z

p dz and F�ð
ffiffiffiffi
ix

p
Þ ¼

ffiffiffi
2

p
eip=4E�ðxÞ

so that Eq. (6) reads

f1ðX ; 0Þ ¼
�be�iK̄X

ir0Uða� 1ÞK̄
fe�iða�1ÞK̄X ½1� F�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iA1X

p
Þ


�Y½1� F�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�iAX

p
Þ
g. ð7Þ

Going to the total disturbance potential, we find

f2ðX ; 0Þ ¼
b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ 2

p
e�im̄ð1�MÞX

ipr0Uða� 1ÞK̄
½W 1ðX þ 2Þ �YW ðX þ 2Þ
 (8)

with

W 1ðX þ 2Þ ¼

Z 1

0

ei½aK̄þðM�1Þm̄
ðxþ2Þ

ðxþ 2þ X Þ
ffiffiffi
x

p erfc
1þ iffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1ðxþ 2Þ

p� �
dx

and

W ðX þ 2Þ ¼

Z 1

0

ei½K̄þðM�1Þm̄
ðxþ2Þ

ðxþ 2þ X Þ
ffiffiffi
x

p erfc
1þ iffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðxþ 2Þ

p� �
dx.

Since the derivations are made to get a correction, a consistent approximation is sufficient. Using
classical expansions of the complementary error function [26] leads toffiffiffi

p
p

ð1þ iÞx e2ix
2

erfc½ð1þ iÞx
 ¼ 1þ
X1
m¼1

im
1 � 3 � � � ð2m � 1Þ

ð4x2Þ
m .

Practically, the argument remains large enough to allow for an expansion to the zeroth order.
Thus

W 1ðX þ 2Þ ’

ffiffiffi
2

p
e�i4m̄

ð1þ iÞ
ffiffiffi
p

p ffiffiffiffiffiffi
A1

p

Z 1

0

e�2im̄xffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
xþ 2

p
ðxþ X þ 2Þ

dx

and, by a further change of variable,

f2ðX ; 0Þ ’
�bð1þ iÞ e�i4m̄ eiðM�1Þm̄X

p3=2r0Uða� 1ÞK̄
ffiffiffi
2

p ffiffiffiffiffiffi
A1

p ð1�Y2ÞI

is obtained with

I ¼

Z 1

0

e�2im̄ðXþ2Þxffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðX þ 2Þx

p
ð1þ xÞ

dx
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I has no analytic closed-form solution. A numerical evaluation would lead to additional
derivatives when later deriving the wall pressure and the subsequent radiation integral. Again an
approximation, consistent with numerical tests, is better. Indeed, xþ 2 is larger than 2 and aK̄ is
easily several units in the applications. This suggests the introduction of the following simplified
integral, that is solvable analytically [24]:

I0 ¼
1ffiffiffi
2

p

Z 1

0

e�2im̄ðXþ2Þxffiffiffi
x

p
ð1þ xÞ

dx ¼
pffiffiffi
2

p e2im̄ðXþ2Þ½1� ð1þ iÞE�ð2m̄ðX þ 2ÞÞ
.

Comparison with the numerical computation of the exact integral shows that the preceding
simplified integral need only be corrected on the imaginary part, provided that m̄ does not
approach zero, according to

ReðIÞ ’ ReðI0Þ; ImðIÞ ’ � ImðI0Þ with � ¼ 1þ
1

4m̄

� ��1=2

.

The exact value of the integral and the approximate closed form solution are plotted in Fig. 2 for
m̄ ¼ 1; as an example. Numerical tests have proved the approximation to be satisfactory for
acoustic calculations even at reasonably low frequencies (typically m̄ ¼ 0:05). Discrepancies
remain on the imaginary part. They will be overcome by the regularization procedure proposed in
Section 4. Finally, Eq. (8) becomes

f2ðX ; 0Þ ’
�b

r0U

� �
ð1þ iÞe�4im̄

2
ffiffiffi
p

p
ða� 1ÞK̄

1�Y2ffiffiffiffiffiffi
A1

p eiðM�1Þm̄X

�fe2im̄ðXþ2Þ½1� ð1þ iÞE�ð2m̄ðX þ 2ÞÞ
gc, ð9Þ

the notation f:gc standing for an imaginary part multiplied by the correcting factor �:
0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

X

R
e(

I)

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

X

Im
(I

)

Fig. 2. Exact integral I and approximation. M ¼ 0:05; m̄ ¼ 1: —, numerical computation; - - -, simplified integral; -.-,

approximation.
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The last step is to deduce the back-scattering disturbance pressure from Eq. (5). Formally we
have

P2ðX ; 0Þ ’
ð1þ iÞe�4im̄

2
ffiffiffi
p

p
ða� 1ÞK̄

1�Y2ffiffiffiffiffiffi
A1

p eiðM�1Þm̄X

� i½K̄ þ ðM � 1Þm̄
f�gc þ
q
qX

f�g

� �c
 �
ð10Þ

with the property that the correction of the imaginary part and the derivative with respect to X
commute.
This back-scattering correction has been developed here because the induced loads do

concentrate at the leading edge, in the same way as found in classical linearized theories of
unsteady aerodynamics [21] (the derivative leading to P2 generates a factor of ðX þ 2Þ�1=2). As a
consequence, some quantitative evaluation is needed before concluding as to whether it can be
neglected or not. Now P2 does not satisfy the Kutta condition and should also be corrected in
principle. Rigorous use of Schwarzschild’s solution would lead to an iterative procedure with
successive trailing- and leading-edge steps. The aforementioned application to the noise
generation by upstream turbulence impinging on an airfoil [21] shows that the first two are
enough. The same is assumed to hold here. More attention will be paid to this point in Section 4.1.
3. 3D gust solution

3.1. Wave equation

The most general incident wall pressure field convected past the trailing edge can be split by
Fourier analysis into 2D wavenumbers with components K1 and K2 in the streamwise and
spanwise directions, respectively. At a given frequency, each wavenumber corresponds to an
oblique gust, leading to a 3D scattering problem. The Schwarzschild’s solution must be recast,
including the spanwise component, associated with the y coordinate. Since the trailing edge is
assimilated to the edge of a half-plane extending to infinity along the spanwise y-axis, the
generalization is straightforward. The spanwise dependence can be factorized, leading to a
corrected form of the 2D problem of the preceding section.
The equation for the disturbance pressure now is written as

q2p0

qx2
þ

q2p0

qz2
þ

q2p0

qy2
�

1

c20

q
qt

þ U
q
qx

� �2

p0 ¼ 0.

The solution is sought in the form of

p0ðx; y; z; tÞ ¼ Pðx; y; zÞeiot,

Pðx; y; zÞ ¼ pðx; zÞeiðkM=b2Þx e�iK2y

compatible with the boundary conditions, and the incident wall pressure gust is generalized as

P0 ¼ e�iaK̄X e�iK̄2Y



ARTICLE IN PRESS

M. Roger, S. Moreau / Journal of Sound and Vibration 286 (2005) 477–506 487
with Y ¼ y=b: The wave equation becomes

q2p

qX 2
þ

q2p

qZ2
þ k̄2 p ¼ 0 (11)

in which

k̄2 ¼ m̄2 �
K̄

2
2

b2

and the canonical problem is recovered with k̄ instead of m̄; provided that k̄2 is positive. This
implies that

jK̄2jo
K̄M

b
¼

K̄1M

ab

with K̄1 ¼ aK̄ the streamwise non-dimensional wavenumber.
All the derivations of Section 2 are easily extended in the 3D case, bearing in mind that m̄ is

replaced by k̄ in the wave equation but not in the change of variable between p and P: Eqs. (4), (9)
and (10), respectively, become

P1ðX ; 0Þ ¼ e�iaK̄X ½ð1þ iÞE�ð�½aK̄ þ k̄þ Mm̄
X Þ � 1
,

f2ðX ; 0Þ ’
�b

r0U

� �
ð1þ iÞe�4ik̄

2
ffiffiffi
p

p
ða� 1ÞK̄

1�Y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aK̄ þ Mm̄þ k̄

p eiðMm̄�k̄ÞX

�fe2ik̄ðXþ2Þ½1� ð1þ iÞE�ð2k̄ðX þ 2ÞÞ
gc,

P2ðX ; 0Þ ’
ð1þ iÞe�4ik̄

2
ffiffiffi
p

p
ða� 1ÞK̄

1�Y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aK̄ þ Mm̄þ k̄

p eiðMm̄�k̄ÞX

� i½K̄ þ Mm̄� k̄
f�gc þ
q
qX

f�g

� �c
 �
,

Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄1 þ m̄M þ k̄
K̄ þ m̄M þ k̄

s
.

Some numerical errors may occur when applying the analytical solution to a 3D gust, however,
since k̄ is now allowed to approach zero for finite m̄: This point will be emphasized later on in
Section 4.1.
The present 3D analysis assumes that what happens at the span ends can be neglected, the

induced disturbance wall pressure establishing itself as if the span was infinite. It holds rigorously
if the spanwise extent of the trailing edge is large when compared to the aerodynamic wavelengths
2p=K2 that carry a significant energy in the incident turbulent pressure field, or the corresponding
spanwise correlation lengths.
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3.2. Subcritical gusts

If the preceding condition on K̄2 is not satisfied, an elliptic equation is obtained. Were the
solution for the sound field directly sought from that equation in the whole space, the
corresponding so-called subcritical pressure gusts would not radiate, essentially as a result of the
assumption of infinite span. More precisely, they are expected to induce a field decaying
exponentially from the airfoil surface, which means that the only contributors to the far field are
the so-called supercritical gusts (k̄240). In the present application, the field induced on the airfoil
surface by all gusts including the subcritical ones is used as an acoustic source distribution. In the
following section, the acoustic field will be obtained from this field by integrating over the actual
airfoil surface. The subcritical gusts k̄2o0 will then contribute to the radiated sound field due to
the finite span. This is the reason why the behavior of the subcritical gusts is analyzed in this
section. The special case k̄ ¼ 0 will be referred to as the cut-off condition. Note that the same
splitting between elliptic and hyperbolic solutions arises in classical linearized theories of unsteady
aerodynamics, as stated by Graham [25] and Amiet [21]. At a given Mach number, the main
contribution to the radiation comes from the supercritical gusts, and thus the small spanwise
wavenumbers. With increasing Mach number, more and more oblique gusts contribute
significantly.
The subcritical solution can be inferred considering again Eq. (2) with a negative k̄2 instead of

m̄2: The square root must be chosen in order to ensure the expected decay. Using the relationship
between E� and F� yields the modified result

P1ðX ; 0Þ ¼ �e�iaK̄X ½1� F�ð½�iðaK̄ þ Mm� ik̄0ÞX 
1=2Þ


defining now

k̄0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄2

b

� �2

� m̄2

s
.

Sample numerical results are plotted in Fig. 3 for fixed values of the frequency and a low
Mach number, with a progressive variation of K̄2 from 0 to 2m̄ corresponding to gusts
passing from the supercritical to the subcritical range. A continuous transition is observed
between both regimes. K̄2 is found to have a negligible effect on the supercritical solution P1

(all dashed-lines curves almost collapse here for the small value of M), whereas increasing
K̄2 in the subcritical case rapidly leads to a much faster decay upstream from the trailing
edge, especially at higher frequencies. This is the illustration of the aforementioned filtering
or cut-off.
A leading-edge back-scattering correction is to be developed also for subcritical gusts, even in

view of the faster decay of P1: Indeed, for 3D gusts close to the cut-off condition k̄0 ¼ 0; the
equivalent Schwarzschild’s solution involves a vanishingly small equivalent frequency in the
reduced 2D problem, whatever the actual frequency might be.
f1ðX ; 0Þ is again given by Eq. (7) in which A1 and A are replaced by A0

1 ¼ K̄1 þ Mm̄� ik̄0 and
A0 ¼ K̄ þ Mm̄� ik̄0; respectively and Y by Y0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A0
1=A0

p
: The corresponding derivations are
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again similar to the ones in Section 2, leading to a modified Schwarzschild problem. Instead of the
integral I; a real integral is now found, that can be approximated without any correction
according to

I ¼

Z 1

0

e�2k̄ðXþ2Þxffiffiffi
x

p
ð1þ xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðX þ 2Þx

p dx ’
1ffiffiffi
2

p

Z 1

0

e�2k̄ðXþ2Þxffiffiffi
x

p
ð1þ xÞ

dx

¼
pffiffiffi
2

p e2k̄ðXþ2Þ½1� erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k̄ðX þ 2Þ

p
Þ


and with the same restrictions of non-vanishing k̄0: The new expression for the back-scattering
potential is

f2ðX ; 0Þ ¼
�b

r0U

� �
ð1þ iÞ eiðMm̄�ik̄ÞX

2
ffiffiffi
p

p
ða� 1ÞK̄

ffiffiffiffiffiffi
A0
1

p ð1�Y02Þ½1� erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k̄ðX þ 2Þ

p
Þ


from which P2 is again easily obtained thanks to Eq. (5).
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4. Far-field noise calculations

4.1. Radiation integral

The acoustic far-field pressure corresponding to a disturbance wall pressure of wavenumber
K ¼ ðK1;K2Þ is given by the radiation integral, equivalently found in [21]

pK ðx;oÞ ¼
�iox3

4pc0S
2
0

Z 0

�2b

Z L=2

�L=2
DP eioRt=c0 dydx,

where x ¼ ðx1;x2; x3Þ stands for the observer location with the origin at the trailing edge center
point (Fig. 4). Here DP ¼ 2ðP1 þ P2Þ ¼ 2P is the induced source distribution as given by the
Schwarzschild’s solution of Sections 2 and 3, function of the coordinates ðx; yÞ on the airfoil. The
factor 2 accounts for the opposite disturbance pressures induced on both sides of the airfoil when
the incident pressure is scattered by the trailing edge, acting as equivalent lift fluctuations. The
airfoil extends from �L=2 to L=2 in the spanwise direction.
The convection of the acoustic waves by the uniform external flow is accounted for through the

modified coordinates

Rt ¼
1

b2
ðRs � Mðx1 � xÞÞ,

Rs ¼ S0 1�
x1x þ b2x2y

S2
0

 !
,

S2
0 ¼ x2

1 þ b2ðx2
2 þ x2

3Þ.

P can be written as P ¼ f ðX Þe�iðK̄1XþK̄2Y Þ as a function of the coordinates made non-
dimensional by the half-chord length, f being the complex amplitude of the source distribution,
according to the expressions of Sections 2 and 3. Then the radiation integral becomes

pK ðx;oÞ ¼
�iox3

2pc0S
2
0

b2
Z 0

�2

Z L=ð2bÞ

�L=ð2bÞ

f ðX Þe�iðK̄1XþK̄2Y Þ

�e
�i k

b2
S0�

x1Xþb2x2Y

S0
b�Mðx1�bX Þ

h i
dY dX .
 x2

 x

 L / 2

 x1

 c / 2

 x3

 −c / 2

 (y
1

,y
2

)

 >
 U

  −L / 2

Fig. 4. Source and observer coordinates.
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The integral involving Y is straightforward

b

Z L=ð2bÞ

�L=ð2bÞ

e�i½K̄2�k̄x2=S0
Y dY ¼ L sinc
L

2b
K̄2 � k̄

x2

S0

� �
 �
,

where sincðxÞ stands for sinðxÞ=x and yields

pK ðx;oÞ ¼
�iox3Lb

2pc0S
2
0

sinc
L

2b
K̄2 � k̄

x2

S0

� �
 �

�e�iðk=b
2
ÞðS0�Mx1Þ

Z 0

�2

f ðX Þe�iCX dX ð12Þ

with

C ¼ K̄1 � m̄
x1

S0
� M

� �
.

The analytical solution is derived first for the supercritical gust solution. For the main
contribution P1;

f 1ðX Þ ¼ ð1þ iÞE�ð�BX Þ � 1,

B ¼ K̄1 þ M m̄þ k̄; k̄2 ¼ m̄2 �
K̄

2
2

b2
.

Then integrating by parts we obtainZ 0

�2

f 1ðX Þ e�iCX dX ¼
1

iC
½1� e2iC 
 þ

1þ i

iC
E�ð2BÞe2iC �

1þ i

iC

Z 0

�2

Be�iðC�BÞXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2pBX

p dX

or Z 0

�2

f 1ðX Þe�iCX dX

¼ �
e2iC

iC
ð1þ iÞe�2iC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B

B � C

r
E�½2ðB � CÞ
 � ð1þ iÞE�½2B
 þ 1� e�2iC

( )
. ð13Þ

This result is identical to Amiet’s [9] in the special case K̄2 ¼ 0: According to Amiet [18], the term
e�2iC at the end of the curly brackets can be considered to balance the contribution of the incident
field P0 to the sound radiation. It must be discarded. The solution must also tend to the cardioid
pattern, characteristic of the half-plane solution, as frequency goes to infinity.
The correction P2 is then derived from

f 2ðX Þ ¼ H ei½K̄1þMm̄�k̄
X i½K̄ þ Mm̄� k̄
f�gc þ
q
qX

f�g

� �c
 �
with

H ¼
ð1þ iÞe�4ik̄ ð1�Y2Þ

2
ffiffiffi
p

p
ða� 1ÞK̄

ffiffiffiffi
B

p
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the curly bracket being defined in Section 2. The following integral needs to be calculated:

J ¼

Z 0

�2

e�iDðXþ2Þfe2ik̄ðXþ2Þ½1� ð1þ iÞE�ð2k̄ðX þ 2ÞÞ
gc dX

with D ¼ k̄� m̄x1=S0: The real and imaginary parts must be treated separately and some tedious
algebra leads to

J ¼ �
1þ �

2
ð1þ iÞ

Z 2

0

e�iðD�2k̄ÞxE�ð2k̄xÞdx

�
1� �

2
ð1� iÞ

Z 2

0

e�iðDþ2k̄ÞxEð2k̄xÞdx.

Each remaining integral is again calculated by integrating by parts

1

H

Z 0

�2

f 2ðX Þ e�iCX dX

¼ fe4ik̄½1� ð1þ iÞE�ð4k̄Þ
gc � e2iD þ i½D þ K̄ þ Mm̄� k̄
G ð14Þ

with

G ¼ ð1þ �Þ eið2k̄þDÞ sin ðD � 2k̄Þ
D � 2k̄

þ ð1� �Þ eið�2k̄þDÞ sin ðD þ 2k̄Þ
D þ 2k̄

þ
ð1þ �Þð1� iÞ

2ðD � 2k̄Þ
e4ik̄E�ð4k̄Þ �

ð1� �Þð1þ iÞ

2ðD þ 2k̄Þ
e�4ik̄Eð4k̄Þ

þ
e2iD

2

ffiffiffiffiffiffi
2k̄
D

r
E�ð2DÞ

ð1þ iÞð1� �Þ

D þ 2k̄
�
ð1� iÞð1þ �Þ

D � 2k̄

� �
.

The full expression of the acoustic pressure is then obtained from Eqs. (12)–(14). The main
factor relating the far-field sound to the aerodynamic wall pressure field is the following radiation
integral summing both contributions:

IðK̄1; K̄2Þ ¼

Z 0

�2

f ðX Þ e�iCX dX with f ¼ f 1 þ f 2.

The associated directivity pattern in terms of the product jkcI j times x3=S0 is plotted in Fig. 5 for
K̄2 ¼ 0 (mid-span plane) at different low reduced frequencies and a very low Mach number
(M ¼ 0:05). The latter restriction emphasizes the main features of the radiation integral due to the
limited chord length with no additional convection effects. It is also justified by the intended
applications to low-speed fans. The solutions, however, are valid for any subsonic Mach number.
The external flow direction is from left to right, parallel to the chord line, corresponding to the
horizontal axis at angle 0�: The full calculation is plotted along with only the main trailing-edge
scattering, and the leading-edge back-scattering is inferred from the difference. Note that the
diagrams are symmetrical with respect to the axis since the theoretical trailing-edge noise
radiation is in opposite phase on each side of the airfoil plane. This is well reproduced for instance
by the computations of Singer et al. [13]. The expected two lobes characteristic of a compact
dipole are obtained. The back-scattering correction is found partially to cancel the main
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Fig. 5. Typical directivity patterns at low frequencies. M ¼ 0:05: —, full solution: -.-, main term only.
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trailing-edge contribution at lower frequencies. A systematic overestimate would then result from
using the main term only. However, Eq. (14) may not be valid for arbitrarily small kc: At about
kc ¼ 1; the net effect of the correction becomes negligible.
Equivalent calculations are reported in Fig. 6 for higher frequencies. As frequency increases, the

main lobes bend toward the leading edge and secondary lobes appear. The directivity diagram
roughly tends to the asymptotic cardioid pattern associated with the edge scattering of a half-
plane [8,10]. As expected, the leading-edge correction vanishes as the frequency increases. The
resulting high-frequency behavior is equivalent to that which would be derived by just using the
original Amiet’s formulation. Furthermore, the directivity results of Fig. 6 are in very good
agreement with Howe’s results obtained at the same four reduced frequencies [11]. The latter work
addresses the same mathematical problem, based on the vanishing Mach number Green’s
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term only.
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function tailored to a finite-chord flat plate, for sources close to the trailing edge. Both
formulations are equivalent in the limit of very low Mach number flows. The advantage of the
present approach is that it can be used at higher velocities.
Oblique gusts, with non-zero K̄2; depart progressively from the above behavior as jK̄2j

increases. Apparent singularities suggested by the possible values B � C ¼ 0 and D ¼ 0 in
Eqs. (13) and (14) generate more focused radiation lobes, even in the mid-span plane, as shown in
Fig. 7. It can be guessed that the higher efficiency of the radiation integral at the lobes is balanced
by the smaller amount of energy of wall pressure fluctuations spread over the larger spanwise
wavenumbers.



ARTICLE IN PRESS

  0.25

  0.5

30

210

60

240

90

270

120

300

150

330

180 0

kc = 5

  0.35

  0.7

30

210

60

240

90

270

120

300

150

330

180 0

kc = 10

  0.45

  0.9

30

210

60

240

90

270

120

300

150

330

180 0

kc = 20

  0.15

  0.3

30

210

60

240

90

270

120

300

150

330

180 0

kc = 1

Fig. 7. Directivity patterns in the mid-span plane for various relative spanwise wavenumbers. M ¼ 0:05; K̄2=ðbm̄Þ ¼
0:05: (——), 0:7 (- - -), 0:85 (——).

M. Roger, S. Moreau / Journal of Sound and Vibration 286 (2005) 477–506 495
An analysis in terms of directivity patterns can also be made for subcritical gusts. First, a result
equivalent to Eq. (13) can be derived in the same way, using the properties of the complex error
function F� instead of E�

Z 0

�2

f 0
1ðX Þe�iCX dX

¼ �
e2iC

iC
e�2iC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0
1

m̄ðx1=S0Þ � ik̄0

s
F�ð½2iðm̄ ðx1=S0Þ � ik̄0Þ
1=2Þ � F�ð½2iA0

1

1=2Þ þ 1

( )
. ð15Þ

Note that the term e�2iC has already been dropped in Eq. (15).



ARTICLE IN PRESS

M. Roger, S. Moreau / Journal of Sound and Vibration 286 (2005) 477–506496
Secondly, the radiation integral for P2 is obtained using the same derivation techniquesZ 0

�2

f 0
2ðX Þe�iCX dX

¼
e�2iB

B
H 0 A0ðe2iB ½1� erfð

ffiffiffiffiffiffiffi
4k̄0

p
Þ
 � 1Þ þ

ffiffiffiffiffiffiffi
2k̄0

p
K̄ þ M �

x1

S0

� �
m̄

� �
F�ð

ffiffiffiffiffiffiffiffiffiffiffi
�2iB

p
Þffiffiffiffiffiffiffiffiffi

�iB
p

( )
ð16Þ

with

H 0 ¼
ð1þ iÞð1�Y02Þ

2
ffiffiffi
p

p
ða� 1ÞK̄

ffiffiffiffiffiffi
A0
1

p .

Typical diagrams in the mid-span plane are again given in Fig. 8 with the same convention as in
Fig. 6. Subcritical gusts appear to radiate preferentially in directions normal to the airfoil.
Roughly speaking, the aforementioned main lobe angle observed in the supercritical regime has
progressively increased upto 90� at cut-off (k̄ ¼ 0). Then, with increasing K̄2; it can be shown that
it keeps the same direction and drops, according to what is expected qualitatively for rapidly
decaying solutions. Again, the attenuation effect of the leading-edge correction at the smallest
reduced frequency may be partially an artifact of the approximation made in P2: Its validity will
be assessed later.
A first test on the behavior around the cut-off is made by plotting jIðō=Uc; K̄2Þj as a function of

K̄2 over the whole range of both supercritical and subcritical gusts in Figs. 9 and 10. The radiation
integral is computed using either the trailing-edge main scattering P1 only, or the full solution
including leading edge back-scattering. It is found that the leading-edge correction generally has a
noticeable effect on the radiation integral, except for subcritical gusts at higher wavenumbers. Its
main effect, depending on the radiation angle, is around the cut-off, where it ensures a more
reliable behavior. However, deep, narrow cuts occur exactly at the cut-off, which suggests errors
with respect to the expected continuous transition in the exact solution. The lower the frequency
is, the larger the errors are. The Mach number effect combines with the frequency effect on the
results. The cut-off is less effective at higher Mach numbers. Furthermore, the combination of
high frequency and high Mach number does not show significant difference between the full
solution and the one using P1 only.
The sharp cuts are attributed to the breakdown of the present two-step solution at cut-off,

where the proposed approximations fail because the frequency parameter k̄ in the equivalent 2D
Schwarzschild problem is exactly zero. In that sense, the two derived P2 expressions are
asymptotic solutions that need to be properly matched at cut-off. Similar derivations by Landahl
[22] suggest that the third and subsequent terms in the iterative procedure can be neglected in most
applications of Schwarzschild’s technique, provided the frequency parameter is non-zero.
However, a higher number of terms would be necessary around k̄ ¼ 0; where the method
converges with difficulty. These higher-order iterations cannot be derived analytically and their
numerical investigation is out of the scope of the present study. Furthermore, deriving an
arbitrary large number of terms would make the method cumbersome and inappropriate for the
intended application. Physically a smooth transition between supercritical and subcritical gusts is
expected. At high frequencies such a behavior is already observed with the P1 þ P2 solution except
in a very narrow range around k̄ ¼ 0; which suggests that the cuts are model artifacts. Therefore,
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Fig. 8. Directivity patterns in the mid-span plane for subcritical gusts just below cut-off. M ¼ 0:05; K̄2=ðbm̄Þ ¼ 1:05:—,

full solution; -.-, main term only.
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a regularization technique has been applied to the P1 þ P2 solution around the cuts to build a
usable and more robust analytical model. This has been achieved by matching the values of the
derivative qI=qK2 from both sides of the cuts and then re-calculating I : The results of this
regularization are superimposed on the non-corrected results in Fig. 11. Plots are made non-
dimensional using the variable K̄2=ðbm̄Þ: The calculations are made at different angles going from
20� to 160� in the mid-span plane and for two frequencies, with c ¼ 13 cm and M ¼ 0:05: At
200Hz ðkc ¼ 0:48Þ; I is almost independent of the angle y from the downstream direction,
whereas at 1000Hz ðkc ¼ 2:4Þ it increases up to 140�: The behavior of subcritical solutions at
higher values of K̄2=ðbm̄Þ is invariant. All profiles show a range of low spanwise wavenumbers in
which the radiation integral is nearly constant, mainly corresponding to the supercritical range,
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and an asymptotic regular decrease for large wavenumbers, featuring the subcritical range. This
decrease is steeper at higher frequencies. As a consequence of the results, the integral over K̄2 that
is used to predict the far-field noise (see the next section) must include at least the beginning of the
subcritical range. Furthermore, some amplification is observed as frequency increases for oblique
supercritical gusts slightly below cut-off and angles below 120�: This amplification corresponds to
the main lobe observed on the last plots in Fig. 7.
Moreover, the results of Fig. 11 help to assess the approximation made in P2; by pointing out

the limits of the range of K̄2=ðbm̄Þ in which the initially computed solution departs from the
regularized one. On the basis of a chord length of 13 cm and the plots at 200Hz, the solution is
expected to be accurate enough for k̄40:125: This condition is equivalent to kc=b240:25 in the
case of the 2D problem, say a frequency larger than 100Hz at reasonably low Mach numbers.
This makes the first plots of Figs. 5 and 8 at the limit of validity. The latter limit is not a serious
drawback for practical applications, as it is overcome by the regularization procedure. Moreover,
100Hz is outside the range of significant loudness for human hearing.
The special problem of the leading-edge correction for the critical gust, for which k̄ ¼ 0; can be

solved in the same way. The corresponding derivations are given in appendix Appendix A for
completeness. They are not used here since the Schwarzschild’s procedure does not converge at
cut-off.
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4.2. Far-field acoustic power spectral density

The preceding radiation integral holds only for the unit gust with wavenumbers ðK̄1; K̄2Þ at
reduced frequency o: The power spectral density of the far-field sound at the same frequency
results from an integration over all gusts with 2D wavenumbers contributing to this frequency.
Amiet’s arguments [21] may be reproduced to derive the result. Only the main steps are outlined
here. The incident aerodynamic field is assumed frozen when convected past the airfoil trailing
edge, which selects the streamwise aerodynamic wavenumber K1 ¼ o=Uc: The corresponding
disturbance pressure distribution P over the airfoil surface is written as

Pðx; y;oÞ ¼
1

Uc

Z 1

�1

g x;
o
Uc

;K2

� �
A0

o
Uc

;K2

� �
e�iK2y dK2

with Amiet’s function g (related to f of Section 3) formally denoting the transfer function between
the incident pressure P0 of amplitude A0 and the disturbance pressure P; as calculated by the
Schwarzschild’s procedure. The incident wall pressure field induced by the turbulence developing
on the airfoil is assumed a stationary random process. Consequently, P can be statistically
analyzed. The corresponding cross-power spectral density between two points on the surface at
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coordinates ðx; yÞ and ðx0; y0Þ; with y � y0 ¼ Z; is then expressed as

SPPðx; x
0; Z;oÞ ¼

1

Uc

Z 1

�1

g x;
o
Uc

;K2

� �
g� x0;

o
Uc

;K2

� �
e�iK2Z P0

o
Uc

;K2

� �
dK2,

where P0 denotes the wavenumber spectral density of the incident gust amplitudes A0: The
corresponding power spectral density (PSD) of the far-field sound is

Sppðx;oÞ ¼
ox3Lb

2pc0S
2
0

 !2
1

b

Z 1

�1

P0
o
Uc

;K2

� �
sinc2

L

2b
K̄2 � k̄

x2

S0

� �
 �

� I
ō
Uc

; K̄2

� �����
����
2

dK̄2. ð17Þ

The exact calculation using Eq. (17) can be involved within the scope of a fan design cycle. A
major simplification is often made for a fast estimate by assuming that the aspect ratio L=b is large
enough. This approximation is more acceptable if the characteristic scales of the aerodynamic
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field close to the trailing edge are small enough when compared to the chord length. It is written as

sinc2
L

2b
K̄2 � k̄

x2

S0

� �
 �
’
2pb

L
d K̄2 � k̄

x2

S0

� �
,

which selects a privileged oblique gust for each angle of radiation off the mid-span plane, and
leads to

Sppðx;oÞ ¼
ox3b

2pc0S
2
0

 !2

2pL I
ō
Uc

; k̄
x2

S0

� �����
����
2

P0
o
Uc

; k
x2

S0

� �
. (18)

This simplified result may become questionable, however, when applied to a fan. In that case, a
blade must be discretized into several segments with limited spanwise extent because different
relative velocities and flow conditions are encountered at different radial locations. As a
consequence, the equivalent ratio L=b of each segment can be hardly considered as large. This will
be investigated in the validation of Part 2.
Any noise calculation using Eqs. (17) or (18) requires as input the value of P0; that represents

the energy of the incident wall pressure fluctuations at frequency o for a given spanwise
wavenumber. However, the derivation has been made assuming a frozen aerodynamic field. The
real aerodynamic field is not frozen, and can only be reduced for statistical purposes to the full
cross-spectral density function of the incident wall pressure PðK1;K2;oÞ: If P is considered as a
quantity that can be determined elsewhere, either from experiments or from computations, then
the total amount of energy at frequency o is accounted for using the identity

P0
o
Uc

; m
x2

S0

� �
¼

Z 1

�1

P K1; k
x2

S0
; o

� �
dK1.

In fact, P represents so huge an amount of information that it can hardly be fully reproduced
from experimental results. Only partial measurements have been reported for some very simple
flows or some airfoil shapes that can differ considerably from the ones to be investigated. The
necessary flow statistics, even though essential are most often not available. They can be provided
by accurate computational fluid dynamics methods such as Direct Numerical Simulation or Large
Eddy Simulation. However, these simulations are only available for limited canonical test cases
and unsuited to practical Reynolds numbers. For short-term acoustic calculations, the so-called
Corcos’ model [27] is thus often used, even though it was originally proposed to fit measured data
for a fully turbulent boundary layer over a flat plate with zero pressure gradient. The boundary
layers over curved surfaces such as the suction side of an airfoil may not follow the same
properties. Strictly speaking, the first step in this model is the assumption of a statistically
homogeneous wall pressure field close enough to the trailing edge that allows separation of the
variables in the following way:

PðK1;K2;oÞ ¼
FppðoÞ
4p2

Z 1

�1

B
o
Uc

jZ2j
� �

eiK2Z2 dZ2

Z 1

�1

A
o
Uc

jZ1j
� �

eiðK1�o=UcÞZ1 dZ1.

In this factorization, Fpp is the wall pressure spectrum corresponding to the incident aerodynamic
fluctuations only. In experiments, it can be measured by flush-mounted sensors and must be
nearly constant in the investigated trailing-edge area. A and B are two decreasing functions of the



ARTICLE IN PRESS

M. Roger, S. Moreau / Journal of Sound and Vibration 286 (2005) 477–506502
separation distances Z1 and Z2; that characterize the streamwise and spanwise correlation lengths,
respectively. In the original Corcos’ model, they are exponential functions, indicating that the
correlation decreases with both increasing separation and frequency. Corcos’ hypothesis has been
re-visited by Singer [28], who showed using LES that, irrespective of the 1D functions A and B; the
factorization leads to erroneous values of the model oblique wavenumber statistics. Spanwise and
chordwise separations cannot be considered as independent variables. Moreover, in the case of an
airfoil, different statistical features can be observed, as reported in Ref. [19], depending on the
loading conditions. For instance A and B may be functions that do not decrease monotonically
with increasing frequency. As a result, the most general definition of A and B must be considered
here. Furthermore, Corcos’ hypothesis appears not to be necessary for the present acoustic
formulation.
Indeed let us introduce

PðK1;K2;oÞ ¼
1

4p2

ZZ
OppðZ1; Z2;oÞ e

iðK1Z1þK2Z2Þ dZ1 dZ2,

where Opp is the cross-spectral density between signals at two points on the airfoil with separations
Z1 and Z2 in the streamwise and spanwise directions. Then A and B are defined as [28]

AðZ1;oÞ ¼
OppðZ1; 0;oÞ

FppðoÞ
; BðZ2;oÞ ¼

Oppð0; Z2;oÞ
FppðoÞ

and, without any assumption on the wall pressure statistics,Z 1

�1

PðK1;K2;oÞdK1 ¼
Fpp

2p

Z 1

�1

BðZ2;oÞ e
iK2Z2 dZ2.

The chordwise statistics are found to have no effect on trailing-edge noise. This is not surprising
on the basis of physical arguments, since the scattering process only involves a change in the
vortical field at the very trailing edge. However, since the sources are distributed all over the
trailing edge, the spanwise statistics are of major importance.
The more tractable parameter from experiments is the wall pressure field coherence between

two points on the airfoil surface

g2ðZ1; Z2;oÞ ¼
jOppðZ1; Z2;oÞj

2

F2
ppðoÞ

.

Therefore, the coherence can be identified as the squared chordwise and spanwise correlation
functions, A and B; respectively, when the separation Z2 or Z1 is set to zero. In most previously
published experiments [17,19], the measurements are made in the mid-span plane and the only
relevant spanwise wavenumber according to Eq. (18) is K2 ¼ 0: Then the far-field noise is shown
to be proportional to the spanwise correlation length defined as

lyðoÞ ¼
1

2

Z 1

�1

BðZ2;oÞ; dZ2 ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðo; Z2Þ

q
dZ2.

Apart from the mid-span plane, lyðoÞ must be replaced by the corrected correlation length

lyðK2;oÞ ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðZ2;oÞ

q
cosðK2Z2ÞdZ2.
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In the special case of Corcos’ model, this leads to the classical result

BðZ2;oÞ ¼ e�ojZ2j=ðbcUcÞ; lyðoÞ ¼
bcUc

o
; lyðK2;oÞ ¼

o=ðbcUcÞ

K2
2 þ o2=ðbcUcÞ

2
, (19)

bc being a constant. In more general cases, the correlation lengths are to be calculated using an
appropriate model for the coherence. Finally, broadband trailing-edge noise can be predicted
using Eqs. (18) or (17) together with

P0
o
Uc

; k
x2

S0

� �
¼
1

p
FppðoÞ ly k

x2

S0
; o

� �
. (20)

The present result is a revised form Eq. (4) in Ref. [9].
5. Conclusion

The problem of broadband trailing-edge noise modelling, as stated by Amiet [9], has been
revisited by adding a leading-edge back-scattering correction and a 3D extension to the original
formulation. Equations have been proposed for an intended application to fan noise prediction,
using the aerodynamic wall pressure statistics close to the blade trailing-edge as input data. The
wall pressure field is split into 3D either supercritical or subcritical gusts, each with their
individual radiation efficiency. The leading-edge back-scattering is shown to be significant not
only for small reduced frequencies but also when subcritical gusts are included in noise
calculations off the mid-span plane, and more specifically at low Mach numbers. It must be
accounted for, depending on the audible frequency range of interest and depending on the
required accuracy. For large wind-turbine blades, for instance, it may certainly be neglected. It is
important, however, for blades with a small chord length, such as those of automotive fans, since
in that case kc typically ranges from 0.1 to 10. Therefore, the interest of the present analysis is
two-fold. Firstly, it proves the validity of Amiet’s primary work limited to the main trailing-edge
scattering only, for application to large blades. Secondly, it provides a simple extension for other
configurations of industrial interest. The proposed formulae are physically consistent in the sense
that both the directivity and the frequency distribution are properly included. The application to a
rotating fan blade segment in open air can be derived simply, as long as the rotational frequency
remains smaller than the characteristic frequencies of trailing-edge noise, using the method
reported by Paterson and Amiet [29] or Schlinker and Amiet [6]. The only restrictions are that the
blade tip effects be ignored, on the one hand, and that a blade behave in the same way as an
isolated airfoil, on the other hand. The latter point is justified by the fact that trailing-edge noise
sources are not blade-to-blade correlated. It can be guessed that the analytical model applies
better to unducted fans with a blade chord substantially smaller than the inter-blade spacing. In
the case of ducted fans, an in-duct formulation is best suited, and an excellent analytical solution
has been provided by Glegg [30].
The incident wall pressure statistics needed as input in the model may be the stumbling block

for practical applications. It is missing in the RANS codes that are extensively used by
manufacturers and that only provide statistical parameters of the fluctuating velocity field. The
wall pressure data could be provided in the future by more sophisticated flow computations, such
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as incompressible LES. However, fast-running alternative methods remain a real need for short-
term purposes, especially in view of the great variety of flow regimes encountered in rotating blade
technology. Experimental studies dedicated to the characterization of these regimes, such as flow
separation at high loads, are still a point of interest. As a matter of fact, the present theory only
addresses the question of the transfer function between the aerodynamic wall pressure and the far-
field acoustic pressure, assumed independent of the flow conditions. Additional modelling of the
relationship between the velocity statistics and the wall pressure statistics is a subject for future
investigations.
Appendix A. 3D critical gusts ðk̄ ¼ 0Þ

The critical solution is derived here for both the main contribution P1 and the correction P2:
The main contribution is straightforward, for instance as a limit value of the exact supercritical
solution as k goes to zero, and leads to

P0
1ðX ; 0Þ ¼ e�iaK̄X ½ð1þ iÞE�ð�½aK̄ þ Mm̄
X Þ � 1
.

Specific developments are to be made for the leading-edge correction since its approximations
for subcritical and supercritical gusts fail at cut-off. The new expression for the correction
potential is

f0
2ðX ; 0Þ ¼

�bð1þ iÞ eiMm̄X

p3=2r0Uða� 1ÞK̄
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aK̄ þ Mm̄

p ð1�Y2Þ

Z 1

0

dxffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðX þ 2Þx

p
ð1þ xÞ

with Y2 ¼ ðaK̄ þ Mm̄Þ=ðK̄ þ Mm̄Þ:
This form of the remaining integral, which does not depend on frequency, has an analytical

solution [24], leading to

f0
2ðX ; 0Þ ¼

�b

r0U

� �
ð1þ iÞð1�Y2Þ

p3=2ða� 1ÞK̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aK̄ þ Mm̄

p eiMm̄X arcsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�X=2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

�X=2
p .

Then the correction pressure is deduced from

P0
2ðX ; 0Þ

F
¼ iðK̄ þ Mm̄Þ �

1

2X

� �
eiMm̄X arcsin ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�X=2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

�X=2
p þ

eiMm̄X

2X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

X þ 2

r

with

F ¼
ð1þ iÞð1�Y2Þ

p3=2ða� 1ÞK̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aK̄ þ Mm̄

p .

The main trailing-edge contribution to the radiation integral is simply deduced from the
supercritical solution (integral of f 1 in Section 4.1) by setting k̄ ¼ 0: After standard
manipulations, the correction can be written as

1

F

Z 0

�2

f 02ðX Þ e�iCX dX ¼ C 1�
p
2
e�2iA

�
� �

þ
1

2
½1�C


Z 0

�2

eiA
�X GðX ÞdX
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with

GðX Þ ¼
1

X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

X þ 2

r
�
arcsin ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�X=2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

�X=2
p

( )

A� ¼ aK̄ þ Mm̄� C; C ¼
K̄ þ Mm̄

A� .

A very good approximation of G for further analytical derivations is

GðX Þ ’ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ðX þ 2Þ
p þ

p
4

1� 1�
4

3p

� �
X þ 2

2

� �1=4
( )

which yields

1

F

Z 0

�2

f 02ðX Þ e�iCX dX ¼ C 1�
p
2
e�2iA

�
h i

þ
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2
ð1�CÞ

1� e�2iA
�
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�

�

ffiffiffiffiffiffi
p

A�
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e�2iA

�

Eð2A�Þ � 2
p
4
�
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� �
e�2iA

�

ðSÞ
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ð21Þ

with A� ¼ ðaK̄ þ Mm̄Þ � C and

ðSÞ ¼ ð�2iA�Þ
�5=4gð5=4;�2iA�Þ ¼

4

5 1F1

4

5
; 1þ

4

5
; 2iA�

� �
g being the incomplete gamma function and 1F1 the confluent hypergeometric function [26].
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